Doubly Nonparametric Sparse Nonnegative Matrix Factorization Based on Dependent Indian Buffet Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependent Indian Buffet Processes

Latent variable models represent hidden structure in observational data. To account for the distribution of the observational data changing over time, space or some other covariate, we need generalizations of latent variable models that explicitly capture this dependency on the covariate. A variety of such generalizations has been proposed for latent variable models based on the Dirichlet proce...

متن کامل

Sparse Deep Nonnegative Matrix Factorization

Nonnegative matrix factorization is a powerful technique to realize dimension reduction and pattern recognition through single-layer data representation learning. Deep learning, however, with its carefully designed hierarchical structure, is able to combine hidden features to form more representative features for pattern recognition. In this paper, we proposed sparse deep nonnegative matrix fac...

متن کامل

Extended Sparse Nonnegative Matrix Factorization

In sparse nonnegative component analysis (sparse NMF) a given dataset is decomposed into a mixing matrix and a feature data set, which are both nonnegative and fulfill certain sparsity constraints. In this paper, we extend the sparse NMF algorithm to allow for varying sparsity in each feature and discuss the uniqueness of an involved projection step. Furthermore, the eligibility of the extended...

متن کامل

Sparse Nonnegative Matrix Factorization for Clustering

Properties of Nonnegative Matrix Factorization (NMF) as a clustering method are studied by relating its formulation to other methods such as K-means clustering. We show how interpreting the objective function of K-means as that of a lower rank approximation with special constraints allows comparisons between the constraints of NMF and K-means and provides the insight that some constraints can b...

متن کامل

Using underapproximations for sparse nonnegative matrix factorization

Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two low-rank nonnegative matrices: M ≈ VW . In this paper, we attempt to solve NMF problems in a recursive way. In order to do that, we introduce a new variant called Nonne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2018

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2017.2676817